Current Issue : July - September Volume : 2021 Issue Number : 3 Articles : 5 Articles
In general, the optical and electrical characteristics of Cu(In,Ga)Se2 (CIGS) solar cells have been studied under the condition that sunlight is normally incident from the air to the CIGS solar cell having no thick front encapsulation layers. To obtain the calculation results in a realistic module application, we calculate the optical and current–voltage (J–V) characteristics of surface-textured CIGS solar cells by simultaneously considering the thick front encapsulation layers and oblique sunlight incidence.....................
On the basis of a five-parameter photovoltaic (PV) mathematical model, a multipeak output model of a PV array under partial shading conditions (PSCs) is obtained by MATLAB simulation. Simulation and experimental results demonstrate that the model can simulate the performance curves of the PV array under the PSCs. Optimized particle swarm optimization (OPSO) is used to control the multipeak output model that can quickly and accurately track the global maximum power point (GMPP) of PV modules under PSCs. Its main idea is to determine the initial position of particles and remove the acceleration factor and random number in traditional particle swarm optimization (PSO) algorithm. Additionally, according to the distance between two consecutive peak points, the maximum value of velocity is obtained. The advantages of the OPSO include the following: compared with the traditional PSO algorithm, the computing time is greatly shortened; and it is easy to achieve the MPPT with a low-cost microprocessor. In addition, a PV optimizer is designed to improve the output power of PV modules under PSCs, and simulation and experimentation have compared the output characteristics of PV modules in traditional control mode and optimized control mode under PSCs. The experimental results show that the PV optimizer improves the output power of the PV modules by 13.4% under the PSC....
The largest amount of energy in buildings is consumed to provide heating, cooling, and ventilation. Therefore, a practical solution such as using renewable energy sources can be considered to reduce energy costs and pollutants. In addition, architecture principles must be varied to utilize passive solar energy and also to reduce energy losses. In this research, a numerical study is presented to investigate the thermal behavior of TW-FR (Trombe wall placed in a fenestrated room) in the semiarid region of Tunisia. Computational fluid dynamic (CFD) simulation of fluid flow and heat transfer shows good agreement with published data in literature.....................
The electricity distribution network in Ethiopia has the radial nature of network configuration. The interruption of power is due to overloading and failure of distribution lines due to external forces, like trees, animals, and wind. The failure of the radial distribution network brings blackout in the whole power system network as there is no alternative electricity supply. The renewable energy potential of Bahir Dar, Ethiopia, especially solar power is abundant and needs a mechanism to give a response for electricity demand in the country and city other than expecting from the national grid. The solar photovoltaic system interconnection in radial feeders may bring a solution for power interruption and network performance. The sizing and siting of the solar photovoltaic system in the Ethiopian radial distribution system required an optimization tool to obtain better distribution network parameter. The power loss minimization and voltage profile enhancement of the radial distribution network are the key objectives of this research. Selective particle swarm optimization (SPSO) is used to fix the size and site of installation for network capacity enhancement. A multiobjective optimization problem is formulated so as to meet different constraints to be optimized by the SPSO. Finally, the SPSO enables determining proper size and site of solar power installation and bringing better performance in the radial distribution network of Ethiopia....
In order to solve the problem that the influence of light intensity on solar cells is easily affected by the complexity of photovoltaic cell parameters in the past, it is proposed based on the influence of light intensity on the power generation performance of solar cells. By analyzing the electrical performance parameters of photovoltaic cell trough solar energy and determining the influencing factors, discarding other weakly related parameters, and designing targeted research programs, according to the study of the impact of light intensity and temperature on the battery temperature changes, the performance of photovoltaic power generation was understood. The output voltage and current of the maximum power point were obtained. By analyzing its relationship with influencing factors, the impact analysis on the power generation performance of photovoltaic cells was realized. The experimental results show that the open circuit voltage, short-circuit current, and maximum output power of solar cells increase with the increase of light intensity. Therefore, it can be known that the greater the light intensity, the better the power generation performance of the solar cell....
Loading....